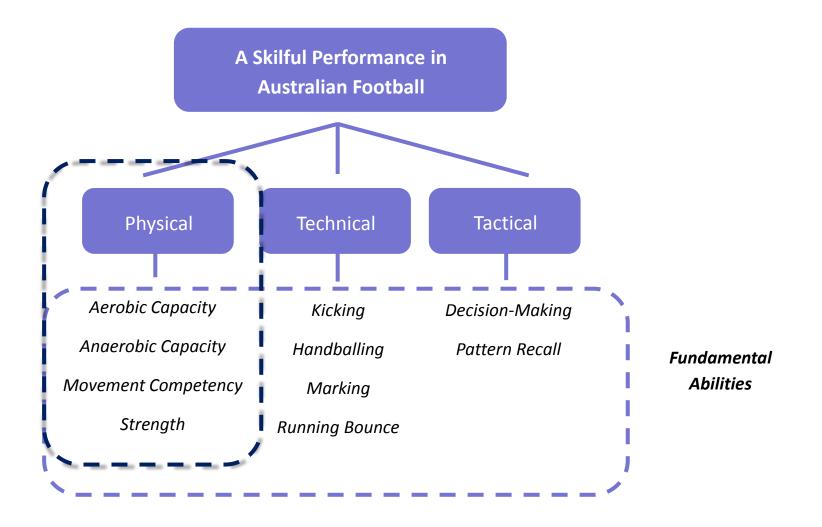
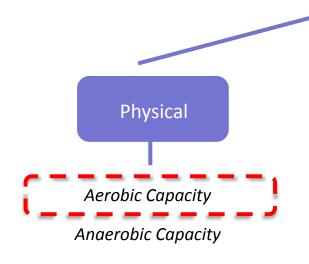
The physical development of Australian footballers

Carl Woods BAppSci (Hons) PhD Candidate Talent Identification, Development and Skill Acquisition in Junior Australian Football **School of Exercise and Health Sciences** Edith Cowan University | Joondalup Campus Phone | +61 8 6304 3821 Email | c.woods@ecu.edu.au

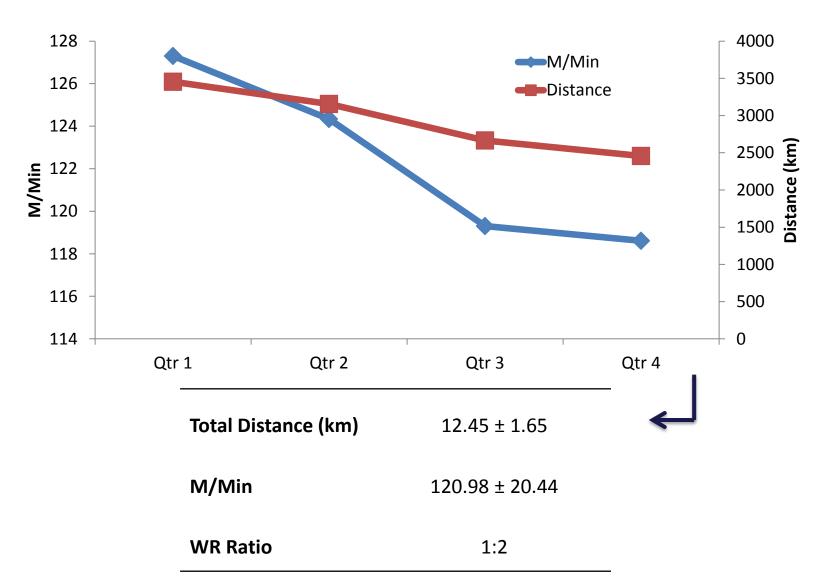
Presentation Overview

- The physical abilities needed in Australian football
- Preparing players for the rigours of a season
 - Aerobic ability
 - Anaerobic ability
 - Movement competency Junior Athlete Specific
- Monitoring player workloads and fatigue
 - The use of global positioning external
 - The use of muscle soreness questionnaires internal

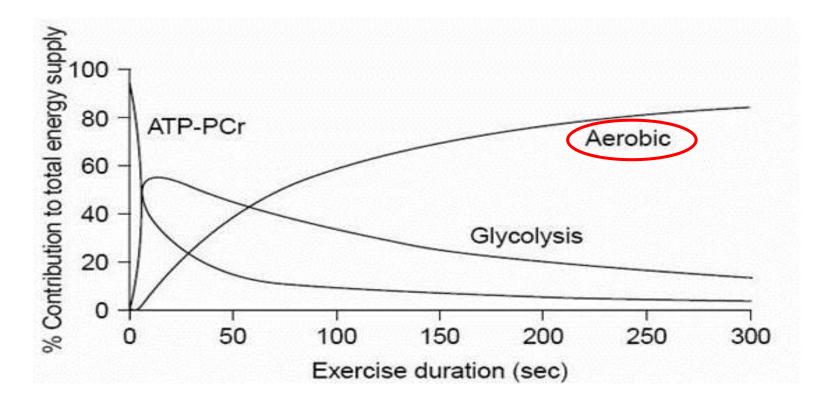



Australian Football – The constituents of a skilful performance

A Skilful Performance in Australian Football


Movement Competency

Strength

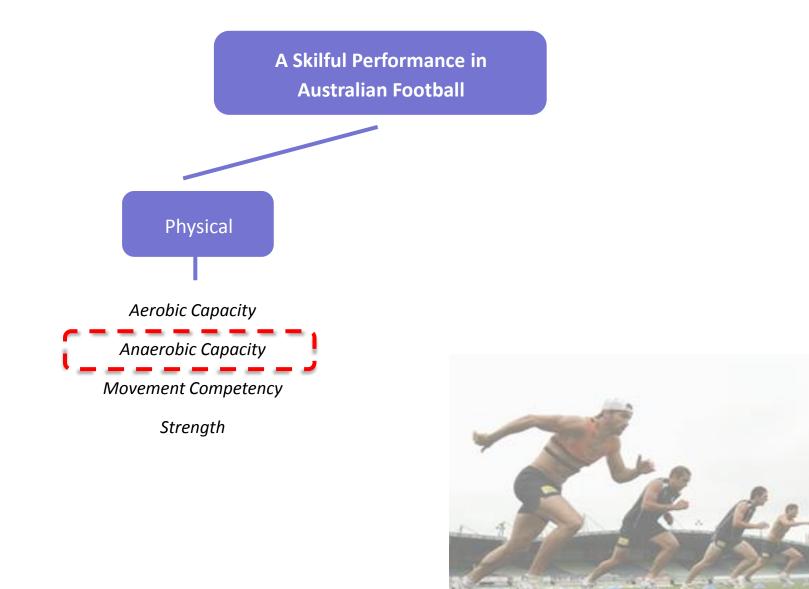


Aerobic Ability – How do we train it?

What do we know?

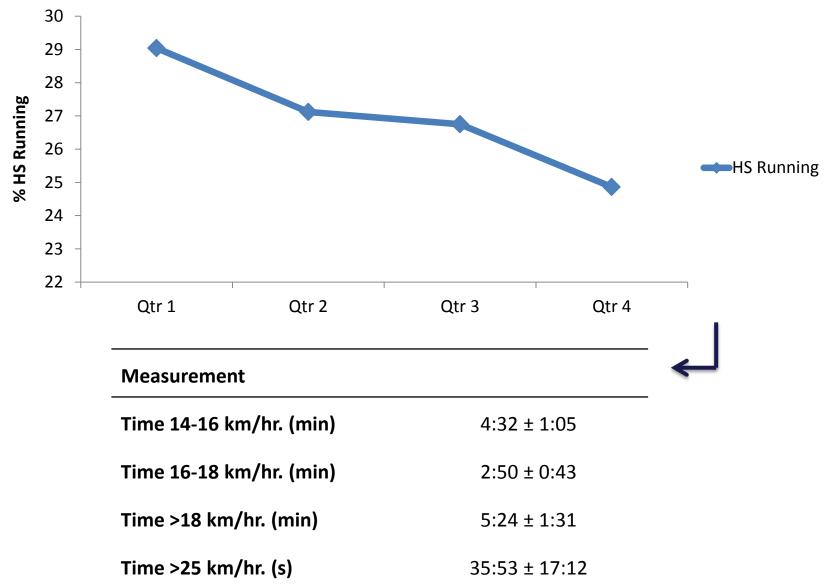
- Aerobic training improves an athletes ability to efficiently deliver O2 to the working muscles
- **Frequency** Minimum of twice / week
- Intensity 90-95% Vo2Max (RPE of 9-9.5 using Borgs CR10 scale) or intermittently supramaximally
- Duration > 4 minutes

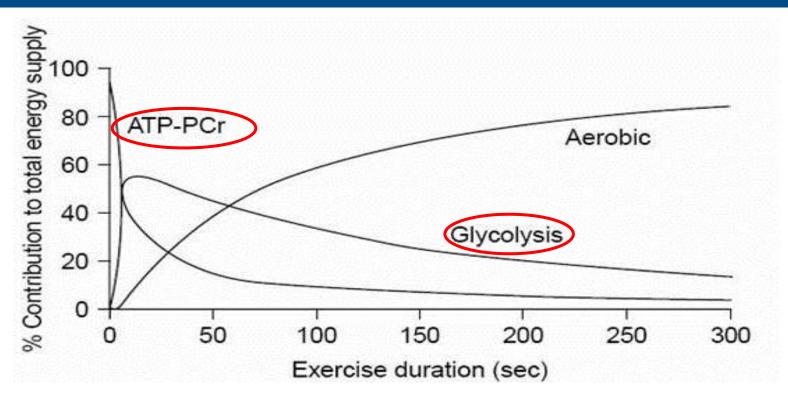
Study	Aerobic protocol	Results
Helgerud et al. (2001)	 4 x 4 min at 90 - 95% HR max with 3 min active recovery Twice/week x8 weeks 	 Vo2 Max improved ~ 10% Lactate threshold improved ~ 14% Distance covered in match improved ~20%
Hoff & Helgerud (2004)	 Compared 60-80% intensity to 90- 95% HR max twice per week over 8-12 weeks 	 90-95% saw improvements in Vo2 Max of 10-30% whilst 60-80% only saw 5-10% improvements


Study	Aerobic protocol	Results
Hoff et al. (2002)	• 5 x 5 SSG	 SSG elicited an average HR of 91.3%
	 2 x 4 minute intervals 	HR max
		 Deemed as acceptable to train
		aerobic ability
Katis & Kellis (2009)	 Compared a 3 x 3 (15 x 25 m) SSG 	 Found a higher HR intensity with
	with a 6 x 6 (30 x 40 m) SSG	the 3 x 3 and thus greater aerobic
		training stimulus
Hill-Haas et al. (2011)	 Compared generic aerobic with SSG 	 Found statistically similar responses
		when comparing techniques

Synthesis of Literature

- Choice of aerobic can come down to coach perceptions and philosophies
- However, SSG's do develop the **technical** and **tactical** requirements of the game under fatigue
 - Multidimensional benefits?


Farrow, Pyne & Gabbett (2008)

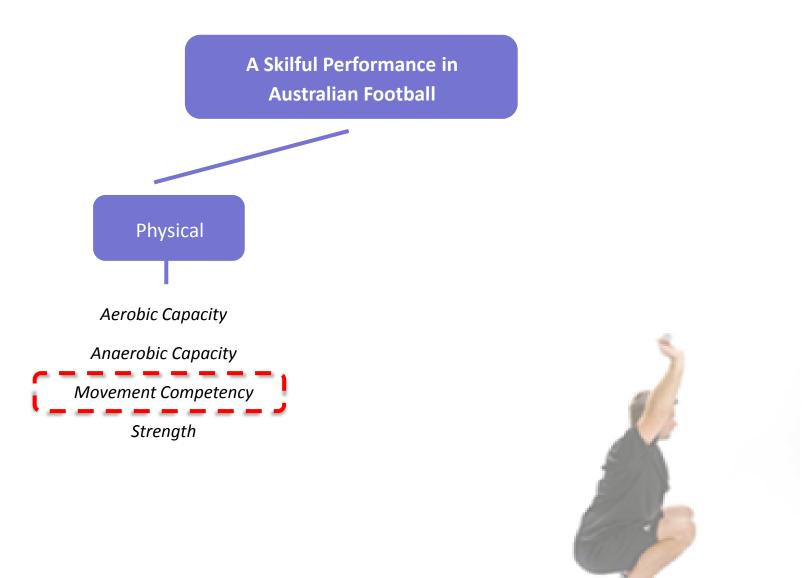

Anaerobic Capacity – An important ability in Australian football

Wisbey, Rattray & Pyne (2008)

Anaerobic Ability – How do we train it?

What do we know?

- Anaerobic training improves an athletes ability to utlise anaerobic glycolysis
 - Greater efficiency results in a greater ability to perform exercise at a high intensity
- **Frequency** Minimum of twice / week
- Intensity Need to work maximally (100%) or supramaximally (120%)
- Duration 10-120 seconds

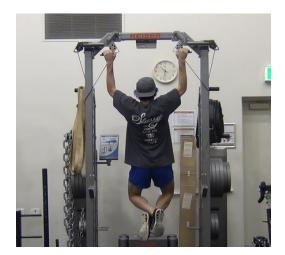


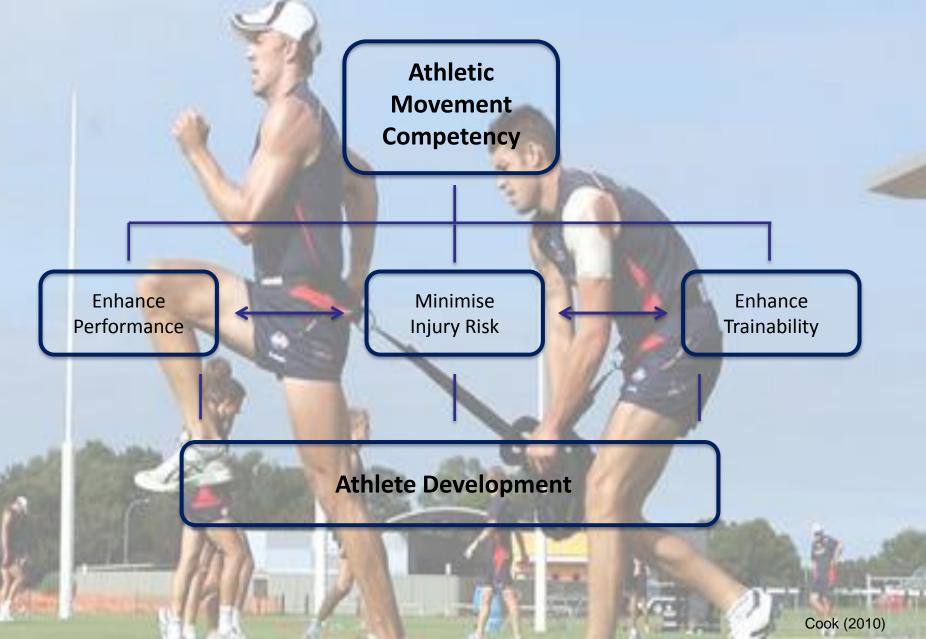
Study	Anaerobic protocol	Results
Bucheitt et al., (2010)	 2-3 sets of 5-6 20m RS with 14 s passive recovery x 1/week over 10 weeks 	 Minor improvements in RS ability
Dupont et al., (2004)	 12-15 40 m max sprints with 30 s rest Twice/week for 10 weeks 	 40 m sprint time significantly decrease following the intervention in comparison to a control

Movement Competency

The ability to perform foundational movements that typically underpin the highly sports-specific movements needed to successfully compete within sport.

 Given the range of highly explosive physical movements required in an Australian football game, a solidified athletic movement competency is crucial





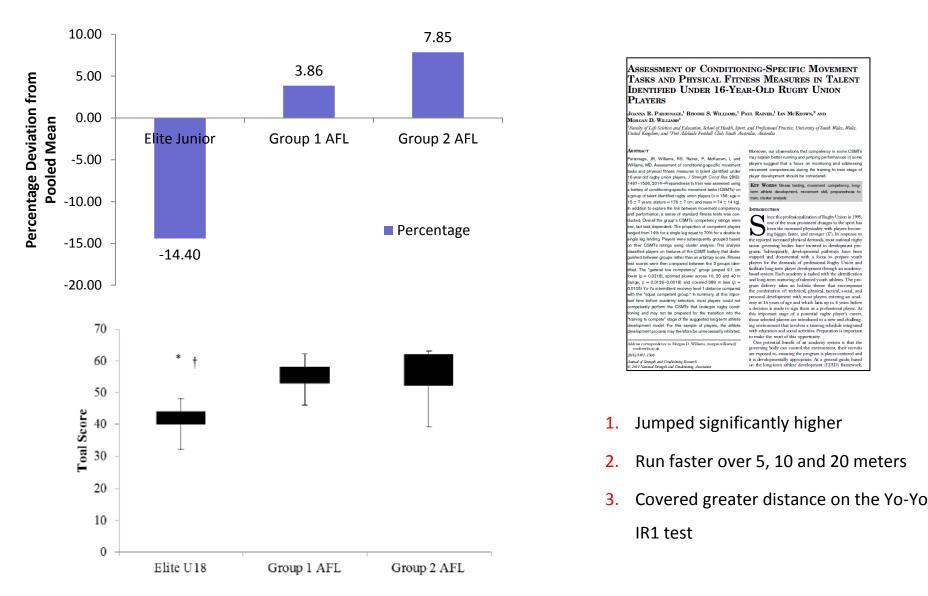
Movement Competency in Australian Football – Why is it important?

Movement Competency – How to measure and train it?

Assess a pre-planned set of un-weighted athletic fundamental movements.

AUSTRALIA

- No "gold standard battery" hinge upon the sport, but:
- Functional Movement Screen (FMS)
- Netball Movement Screening Tool (NMST) Netball
- Conditioning Specific Movement Tasks (CSMT) Rugby
- Athletic Ability Assessment (AAA)
- Modified sports-specific AAA Australian football


Modified AAA To Monitor Athlete Progression in junior Australian football

Athletic movement competency screen inclusive of:

Exercise	Coaching Element	3	2	1						
он sqt	Upper Quadrant	Perfect hands above head/feet	Hands above head/feet	Unable to achieve position						
	Triple Flexion	Perfect SQT to parallel	SQT to parallel (compensatory)	Unable to achieve position						
	Hip Control	Neutral spine throughout	Loss of control at end of range	Excessive deviation						
DL	Hip, Knee, Ankle	Alignment during movement	Slight deviation	Poor alignment						
	Hip Control	Neutral hip position	Slight deviation	Excessive flex/ext.						
	Take off Control	Control	Jerking	Excessive deviation						
Push Up	TB control	Perfect control/alignment	Perfect control/alignment for some	Poor body control for all reps						
	Upper Quadrant	Perfect form/symmetry	Inconsistent	Poor scap positioning for every rep						
	x30 reps	Hits target count		< x 30						
Chin Up	Scap rhythm	Perfect form/symmetry	Inconsistent - some perfect	Unable to achieve position						
	TB control	Perfect control/alignment	Perfect control/alignment for some	Poor body control for all reps						
	x10 reps	Hits target count		< x 10						
SL RDL	Hip Control - Frontal	Maintain neutral spine	Slight flex/ext through hips	Excessive flex/ext. on SL stance						
	Hip Control - Sagittal	No rotation	Slight rotation at end of range	Excessive rotation						
	Hinge range	Achieves parallel	Can dissociate but not reach parallel	Cannot dissociate hips from trunk						

The Importance for Establishing Athletic Movement Competency in Junior Australian Football

Structuring The Development of These Abilities – The basics

Inseason Continued development

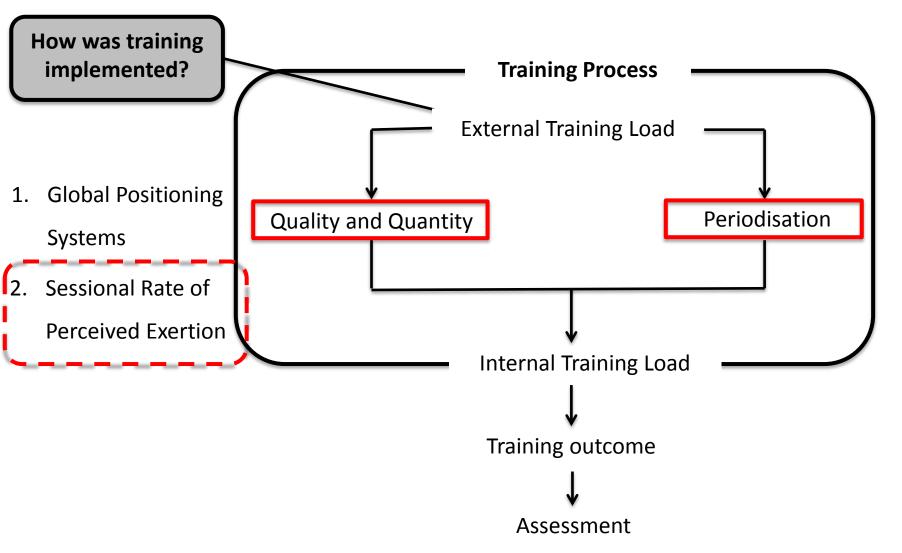
Late Preseason

Maximal Anaerobic Ability/Power

Developing repeat sprint qualities

Early Preseason

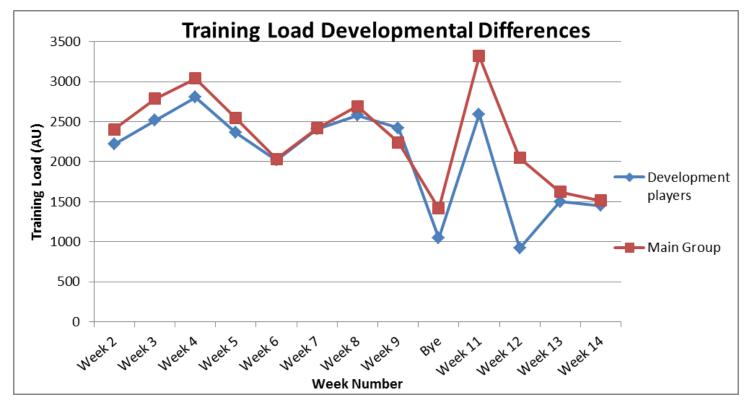
Maximal Aerobic Ability and Movement


Competency/Strength

Building the base to attack more intensive anaerobic

training

Monitoring Training Load - Theoretical Basis

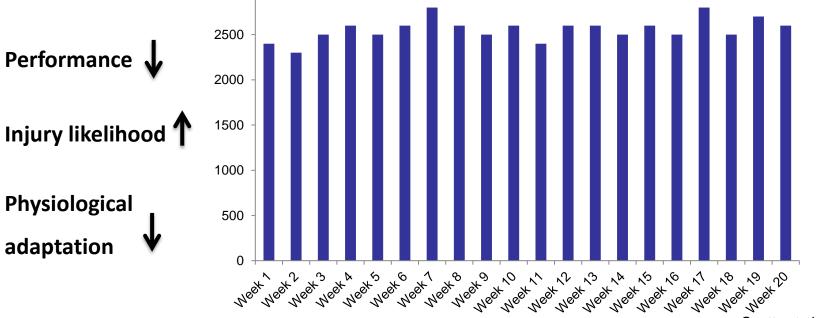


- EDITH COWAN
- Rate of Perceived Exertion is an easily administered method of planning and tracking (periodising) training load.
- 0 NOTHING AT ALL
- 0.5 VERY, VERY LIGHT
 - 1 VERY LIGHT
 - 2 FAIRLY LIGHT
 - 3 MODERATE
 - 4 SOMEWHAT HARD
 - 5 HARD
 - 6
 - 7 VERY HARD
- 8
- 9

- Foster et al. (2001) scale is the most commonly used.
- Players selected their perceived exertion 30 minutes after exercise completion – why?
- This is then multiplied by the duration to get a training load.

10 VERY VERY HARD (MAXIMAL)

 Daily and then weekly loads can be analysed following the calculation of the daily load.



Q. Which player(s) is/are at risk of non-functional OR? Why?

Player	Week 2	Week 3	Week 4	Week 5
	Training Load	Training Load	Training Load	Training Load
Player 1	2900	3280	3365	2430
Player 2	2005	2355	2540	2595
Player 3	1995	2610	2805	2530
Player 4	1920	2075	3310	2405
Player 5	2220	2285	3110	2215
Player 6	2620	3235	2255	2370
Player 7	1631	2668	3205	1895
Player 8	2140	2705	3215	2850
Player 9	2560	2905	3190	2450
Player 10	3095	4000	3540	2931
Player 11	1775	1840	2470	2225
Player 12	3995	4448	3445	3600
Group Average	2405	2867	3038	2541
5% > Group Average	2525	3010	3189	2668
10% > Group Average	2645	3154	3341	2795

- In an attempt to improve performance, coaches often prescribe large volumes of intensive (physical) training.
- This type of program should consist of intense bouts followed by an appropriate recovery phase.
- However, a rigorous program with limited recovery can be extremely problematic.... 3000 -

AUSTRALIA

Coutts et al. (2007)

Looking for Signs of Fatigue

Sports Mod

DOI 10.1007/s40279-014-0253-

Monitoring Training Load to Understand Fatigue in Athletes

Shona L. Halson

© The Author(s) 2014. This article is published with open access at Springerlink.com

taking an increasingly scientific approach to both designing and monitoring training programs. Appropriate load monitoring can aid in determining whether an athlete is adapting to a training program and in minimizing the risk of developing non-functional overreaching, illness, and/or injury. In order to gain an understanding of the training load and its effect on the athlete, a number of potential markers are available for use. However, very few of these markers have strong scientific evidence supporting their use, and there is yet to be a single, definitive marker described in the literature. Research has investigated a number of external load quantifying and monitoring tools, such as power output measuring devices, time-motion amlysis, as well as internal load unit measures, including perception of effort, heart rate, blood lactate, and training impulse. Dissociation between external and internal load units may reveal the state of fatigue of an athlete. Other monitoring tools used by high-performance programs include heart rate recovery, neuromuscular function, biochemical/hormoral/immunological assessments, questionnaires and diaries, psychomotor speed, and sleep quality and quantity. The monitoring approach taken with athletes may depend on whether the athlete is engaging in individual or team sport activity; however, the importance of individualization of load monitoring cannot be over emphasized. Detecting meaningful changes with scientific and statistical approaches can provide confidence and certainty when implementing change. Appropriate monitoring of training load can provide important information to

S. L. Habon (55) AIS Hysiology, Australian Institute of Sport, PO Box 176, Belcomen, ACT 2616, Australia o-mail: Shoma Julicen@ausport.gov.au

Published online: 09 September 2014

Abstract Many athletes, coaches, and support staff are taking an increasingly scientific approach to both designing and monitoring training programs. Appropriate load monitoring and enable efficient reporting of simple, yet scientifitoring can aid in determining whether an athlete is

1 Background

As athletes strive to improve their performance, modifications in tuning load are required, particularly increases in frequency, duration, and intensity. Training loads are adjusted at various times during the training cycle to either increase or decrease fatigue depending on the phase of training (i.e. baseline or competition phase). Ensuring that futigue is titrated appropriately is impostant for both adaptations to training as well as for competition performance [1].

Fatigue is a complex and multifaceted phenomenon that has a variety of possible mechanisms. Indeed, a number of different definitions of fatigue exist, often dependent upon the experimental model employed and/or the conditions under which they occur. One of the most common definitions of fatigue was proposed by Edwards [2], and states that fatigue is a "failure to maintain the required or expected force (or power output).* Fatigue can also be influenced by the type of stimulus (voluntary or electrical), type of contraction (isometric, isotonic, and intermittent or continual), duration, frequency and intensity of exercise, and type of muscle [3]. Further, the physiological and training status of the athlete and the environmental conditions may also significantly influence fatigue. The definitions and caveats mentioned above highlight both the multi-factorial nature of fatigue and the inherent complexities of trying to monitor or measure fatigue in the athlete. For the purpose of this review, and to reflect a

Questionnaires

Heart Rate Recovery

Neuromuscular Function

Cycling Power Output

Perception of Effort

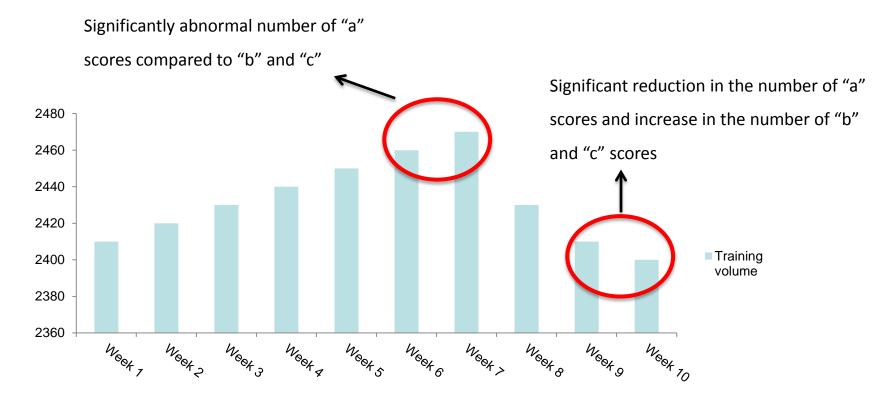
Blood Lactate

Biochemical/Hormonal/Immunological Assessments

Questionnaires

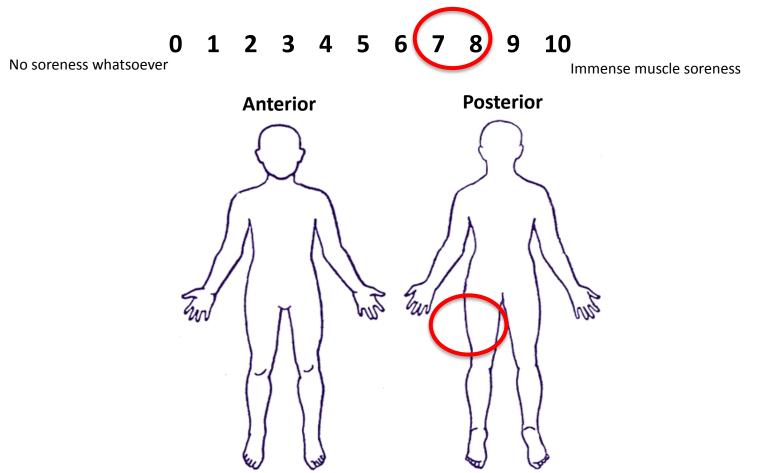
- Simple and inexpensive means of **subjectively** quantifying fatigue.
- However, it is crucial that the frequency of the questionnaire administration and its' length are controlled.
- A range of questionnaires are reported in the literature:
- Profile of Mood States (POMS) Morgan et al. (1987)
- Recovery-Stress Questionnaire for athletes (REST-Q-Sport) Kellmann & Kallus (2000)
- Total Recovery Scale (TRS) Rushall (1990)

Daily Analysis of Life Demands for Athletes (DALDA) – Kentta & Hassmen (1998)


Daily Analysis of Life Demands for Athletes (DALDA)

(a = wo:	rse t	than	norr	nal, b = normal, c = better	than n	orm	ual)	J	
Part A									
1.	a	ь	с	Diet					
2.	а	b	с	Home Life					
3.	а	b	с	School/college/work					
4.	а	b	с	Friends					
5.	а	b	с	Sports Training Climate					
б.	а	b	с	Climate					
7.				Sleep					
8.				Recreation					
9.	а	b	с	Health					
Part B									
1.	2	b	c	Muscle Pains	14.	a	b	с	Enough Sleep
		b		Techniques	15.	а	b	с	Between Session Recovery
3.			c		16.	а	b	с	General Weakness
4.			c		17.			с	Interest
		Ď		Supplementary Work	18.	а	b	с	
6.		b		Boredom	19.			с	
7.		b		Recovery Time					Congestion
8.	а	b	с	2	21.	а	b	с	Training Effort
9.	а	b	с	Weight	22.	а	b	с	Temper
10.	а	b	с	<u> </u>					Swelling
11.	а	b	с	Internal					Likability
12.	а	b	с	Unexplained aches	25.	а	b	с	Runny Nose
13.	а	b	с	Technique Strength					
Nur	nbe	r of	"a"	Scores:					

A significantly higher number of "a" scores in relation to "b" and "c" scores is thought to relate to potential signs of NFOR


DALDA

Muscle Soreness and Location Rating (MSLR)

1. On the scale below, circle your muscle soreness and if above a **5**, circle the regions on the body that are giving you the most soreness.

AUSTRALIA	≻
	E
	SE
	ш
	2
EDITH COWAN	Z
LDITH COWAR	-

	AUSTRALIAN FOOTBALL PERIODISATION PLAN															AU	STR/	ALIA	N FO	отв	BALL	PER	IOD	SAT	ION	PLAN	1																			
WEEK	1	2	3	4 5	6	7	8	9	10 1	.1 12	2 13	13 14 15 16 17 18 19 20 21 22 23									24 2	25 2	6 2	7 28	3 29	30	31	32	33	34	35 3	36 37	38	39	40	41	42 4	43 4	44 4	45	46 4	17	48 4	19 50	51	52
DATE	6-Jan-14	13-Jan-14	20-Jan-14	27-Jan-14 3-Feb-14	10-Feb-14	17-Feb-14	24-Feb-14	3-Mar-14	10-Mar-14	24-Mar-14	31-Mar-14	7-Apr-14	14-Apr-14	21-Apr-14	28-Apr-14 5-May-14	12-May-14	19-May-14	26-May-14	2-Jun-14	9-Jun-14	16-Jun-14	23-JUN-14	Z-Int-14	14-Jul-14	21-Jul-14	28-Jul-14	4-Aug-14	11-Aug-14	18-Aug-14	ZS-Aug-14	1-Sep-14	ө->ер-14 15-Sep-14	22-Sep-14	29-Sep-14	6-Oct-14	13-Oct-14	20-0ct-14	27-OCT-14	3-NOV-14	10-N04-14	17-Nov-14	24-NOV-14	1-Dec-14	ъ-рес-14 15-Dec-14	22-Dec-14	29-Dec-14
CYCLE		Pre-season In-season																							Ро	st-se	aso	n				Off	-sea	son												
PHASE	Specific Preparation								T1 C1 Phase C2 Phase C3 Phase C4 Phase										(:5 Pł	nase		Cé	Pha	se	Transition 2						General Pre			reparation		XIV	AS								
ROUND								NAB	CUP		1	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 F1 F2 F3 GF																																		
MESO			4				5			6		7									8 9				9 10								1 2		2		3									
SUB-PHASE	Strength and Aerobic Volume					Anaerobic Taper								s in r		ness	-	Тар	perin fina	-	to	pla	phasi aced o cove	on		Ac	tive	Rest	:		Str	-	:h & olur		obic	Act Re	ive est									
TESTING																																														
	↑				↑									1						-	1																							1		

- Testing occurs at the beginning and completion of specific mesocycles to track athlete performance but to also assist with exercise prescription.
- Be cautious to not over test remember, these tests are often maximal and may very well induce significant levels of fatigue.

